
Summary

! The three fits agree fairly well:

– Maxima: η̂ = 20.40.649, τ̂ = 5.840.483, ξ̂ = 0.080.072;

– Poisson process: η̂ = 19.80.556, τ̂ = 6.520.379, ξ̂ = 0.070.051;

– POT: p̂u = 0.033, σ̂u = 5.830.394, ξ̂ = 0.070.051.

! The location and scale parameters are estimated quite well, but the shape much less well.

! The shape parameter estimate is slightly positive, but not significantly so (some hydrologists
claim that rainfall has ξ ≈ 0.1 . . . ).

! The fit appears to be good.

! In applications one would need to check that the threshold fits are robust to the choice of u
(above umin).

! It is tempting to fit the model with ξ = 0, which will give much smaller standard errors for the
other parameters. But as we do not know that ξ = 0, this reduction in uncertainty may be
unrealistic, and it may introduce bias in extrapolation.
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3.4 Targets of Inference slide 100

Return levels and return periods

! In basic analyses, typically aim to estimate risk measures such as

P(X > x) = 1− FX(x), xp = F−1
X (1− p),

where X ∼ FX is a background observation and x and xp are larger than any value yet observed.

! We often express risk in terms of blocks of m background observations, often daily
measurements, with the blocks being years; then m = 365.25.

! We then call xp a T -year return level with a return period of 1/p observations or T years (i.e.,
Np = Tm background observations),

– e.g., the law states that nuclear installations should withstand the highest windspeed in
T = 107 years(!), so if X is a daily maximum windspeed, then Np = 365.25 × T and
p = 1/(365.25T ).

! Hence a return level solves the equation

P(X > xp) = 1− FX(xp) = p = 1/Np (13)

for some small p.
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Return levels and return periods II

! If xp > u, so p is less than the probability P(X > u) = pu that a background observation exceeds
threshold u, then solving 1− FX(xp) = p in the POT model gives

xp =

⎧
⎨

⎩
u+

σu
ξ

{
(pu/p)ξ − 1

}
, ξ ̸= 0,

u+ σu log(pu/p), ξ = 0.
(14)

! The GEV applies to maxima of blocks of m background observations, so we approximate the
upper tail of F by G1/m, giving

1− p = G1/m(xp), (15)

which yields

xp =

⎧
⎨

⎩
η +

τ

ξ

[
{−m log(1− p)}−ξ − 1

]
, ξ ̸= 0,

η − τ log {−m log(1− p)} , ξ = 0.
(16)

! In both cases

– − log(1− p)
.
= p = 1/Np for large Np, giving simpler expressions,

– point estimates are obtained by replacing the unknown parameters by their estimates,

– uncertainty is best assessed using the profile log likelihood for xp.
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Note on computation of return levels

! For the POT model in which the GPD is fitted to exceedances of u, and provided xp > u, we have

P(X > xp) = P(X > xp | X > u)P(X > u)

= P(X − u > xp − u | X > u)P(X > u)

= {1 + ξ(xp − u)/σu}
−1/ξ
+ × pu,

and we seek xp such that

1− p = P(X ≤ xp) = 1− pu{1 + ξ(xp − u)/σu}
−1/ξ
+ ,

which leads to the stated expression for xp.

! If the GEV model is fitted to the maxima of blocks of m background observations then we have

1− p = G1/m(xp) = exp
[
− {1 + ξ(xp − η)/τ}−1/ξ

+ /m
]
,

which gives the stated expression for xp.
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Profile log-likelihood

! Here ψ = xp is the 100-year return level for daily precipitation at Abisko based on the GEV fit.

! The strong asymmetry means that symmetric confidence intervals could be very misleading.
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Return levels and return periods III

! In hydrology, an intensity-duration-frequency (IDF) curve describes the relationship between
rainfall intensity, duration, and a given return period and is used for flood risk assessment and
water management.

! For each duration D, the frequency and magnitude of extreme rainfall events are estimated.

! Relying on the GEV applied to the series of annual maxima, estimates of xp, the T -year return
level, are produced. For comparison purposes, we work with I = xp/D.

! The Gumbel distribution is usually used for convenience but more general approaches have
recently been proposed.

IDF curves for Montréal airport. Source: Environment and Climate Change Canada (ECCC)
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Other measures of risk

! In environmental applications it may be important to estimate amounts of rain falling into an
entire catchment area, or the length and impact of a heatwave, or . . .

! The Basel Accords regulate measures of risk to be used by financial institutions:

– the Value at Risk VaRp is another name for a quantile/return level xp;

– the Expected Shortfall is defined as the expected loss conditional on VaRp being exceeded,

E(X − VaRp | X > VaRp),

where in both cases X represents a potential loss.

– More sophisticated measures such as expectiles are also used.
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Comments

! The T -year return level is often called ‘the level exceeded once on average every T years’, and is
easily misinterpreted:

– ‘on average’ does not mean that disasters arise at regular T -year intervals!

– selection is often discounted — if M independent time series are monitored, then we expect
M/T T -year events each year;

– the assumption of stationarity is rarely true, so large events may cluster together in periods of
elevated risk.

! Preferable to refer to quantiles — but probably impossible to change a cultural icon!

! Return levels and return periods are parameters of distributions, but future events are as-yet
unobserved random variables, and it may be useful to consider their distributions. The distribution
of the largest value XT to be observed over T blocks of future background observations is GT (y),
and it may be better to use this for risk analysis, in a Bayesian approach (later, probably).
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4 Complications slide 107

4.1 Introduction slide 108

Basic ideas

! Chapter 3 described ‘vanilla’ statistical analyses for rare events using the GEV, GPD and point
process methods.

! The basic derivations of these models assume that

X1, . . . ,Xm
iid
∼ F, m → ∞.

! In applications these assumptions are generally false:

– m is finite;

– the background data may show trend, seasonality or other forms of non-stationarity, so
Xj ∼ Fj ;

– time series are typically dependent, as cold weather, heatwaves, . . . occur over several days;

– some (maybe subtle) selection mechanism may apply, e.g., when an analysis is performed
immediately after a rare event.

! This chapter will describe methods for detecting and dealing with these problems.

http://stat.epfl.ch slide 109

4.2 Nonstationarity slide 110

Vanilla analysis of maxima

! Our previous analyses supposed that

– block maxima satisfy Y1, . . . , Yn
iid
∼ GEV(η, τ, ξ),

– exceedances of a threshold u satisfy X1 − u, . . . ,Xn − u
iid
∼ GPD(σ, ξ),

but often we observe additional variation, either due to

– systematic changes in the background data (e.g., due to trend or seasonality), or to

– haphazard variation (e.g., due to weather conditions) that we have not accounted for.

! We’ll pass most time looking at systematic changes.

! For an example of haphazard variation, consider annual maximum daily rainfall
M = max(X1, . . . ,X365), where Xj is total rainfall on day j. On many days Xj = 0, so

M = max(X1, . . . ,XN ),

where N ≪ 365 is the (random) number of rainy days. If N varies a lot from year to year, then
M might be much smaller in some years than in others, so the GEV is a poor model (remember
we derive it assuming that Xj ∼ F , where F is continuous . . . ).
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A damp day in Venice

http://stat.epfl.ch slide 112

Punta della Dogana and Santa Maria della Salute
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Annual maximum sea levels, 1887–2024

In October 2020, the MOdulo Sperimentale Elettromeccanico (MOSE) system was inaugurated: rows
of mobile gates are raised when particularly high tides are predicted, in order to limit how much water
from the Adriatic Sea can enter the Venetian lagoon. The record: 196 cm in 1996.
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Ten largest annual sea levels, 1887–2024

In 1935, only the six largest values are available, and in 1922 only the largest value is available. The
data sources for 1887–1981 and 1982 onwards are different.
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Non-stationarity

! Obvious approach is to suppose that the GEV parameters can depend on external factors, i.e.,
Yt ∼ GEV(ηt, τt, ξt), where the dependence might be specified as

ηt(β) = β0 + β1t,

ηt(β) = β0 +
K∑

k=1

{β2k−1 cos(2πkt/365) + β2k sin(2πkt/365)},

ηt(β) = β0 + β1x(t),

τt(β) = exp(β0 + β1t),

ξt(β) =

{
β1, t ≤ t0,
β2, t > t0,

where x(t) is some physical quantity that varies over time (e.g., ENSO, NAO, or global average
temperature).

! In applications we typically find that

– the location parameter η varies,

– the scale parameter τ might or might not vary,

– the shape parameter ξ is constant (it is difficult to estimate, and anyway often is regarded as
an intrinsic aspect of the background process).
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Parametric inference

! Example model specification: yt
ind
∼ GEV(ηt, τt, ξt), where ηt, τt, ξt depend on parameters β.

! If y1, . . . , yn are assumed to be independent, then the log likelihood for β is

ℓ(β) =
n∑

t=1

log g{yt; ηt(β), τt(β), ξt(β)},

where g is the GEV density.

! Maximization of ℓ(β) yields maximum likelihood estimates and the observed information matrix,
from which we compute standard errors, confidence intervals, etc.

! We say that model M0 is nested within a model M1 if M1 reduces to M0 by fixing (say) d
parameters. Then the corresponding maximised log likelihoods satisfy ℓ̂1 ≥ ℓ̂0, and the likelihood
ratio statistic (or equivalently difference in deviances) is

W = 2(ℓ̂1 − ℓ̂0).

! If M0 is adequate, then asymptotic likelihood theory implies that W
·
∼ χ2

d, so values of W larger
than the 1− α quantile of the χ2

d distribution would lead to a rejection of M0 in favour of M1,
at significance level α.
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Model diagnostics

! If Yt ∼ GEV(ηt, τt, ξt) for t = 1, . . . , n, then

Zt =
1

ξt
log

(
1 + ξt

yt − ηt
τt

)
iid
∼ standard Gumbel,

i.e.,
P(Zt ≤ z) = exp{− exp(−z)}, z ∈ R, t = 1, . . . , n.

! If we replace the parameters by their estimates η̂t = ηt(β̂), etc., these results should still hold
(approximately) for the Gumbel residuals

ẑt =
1

ξ̂t
log

(
1 + ξ̂t

yt − η̂t
τ̂t

)
, t = 1, . . . , n.

! We use the ẑt in diagnostic plots, e.g.,

– the probability plot, showing
{
j/(n + 1), exp{− exp(−ẑ(j))}; j = 1, . . . , n

}
, or

– the quantile plot, showing
{(

− log [− log{j/(n + 1)}] , ẑ(j)
)
; j = 1, . . . , n

}
, or

plots of the ẑj against appropriate variables, to see if any patterns remain after fitting the model.
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Example: Venice sea levels, 1887–2019

! We ignore the data from 2020 onwards, when MOSE is operational.

! Analysis of maxima uses straight-line regression model,

ηt = β0 + β1xt, t = 1, . . . , n = 133,

with (x1, . . . , x133) = (1887 − 1990, . . . , 2019 − 1900)/100 chosen so that

– β0 equals the location parameter in the year 1900,

– β1 denotes the change in maximum sea level over 100 years,

! We fit two nested models, both with constant scale and shape parameters, i.e.,

M0 : ηt = β0, τt = τ, ξt = ξ,

M1 : ηt = β0 + β1xt, τt = τ, ξt = ξ.

! The code prints a ‘deviance’ D = −2ℓ̂ for the fitted model, which allows model comparison using
the likelihood ratio statistic:

w = 2(ℓ̂1 − ℓ̂0) = D0 −D1.
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Example: Fitting models

y <- venice$y[venice$year<2020,1]

x <- (venice$year[venice$year<2020]-1900)/100

(fit0 <- evd::fgev(y))

Call: evd::fgev(x = y)

Deviance: 1193.487

Estimates

loc scale shape

106.517 20.050 -0.139

Standard Errors

loc scale shape

1.89487 1.29297 0.04412

Optimization Information

Convergence: successful ...

(fit1 <- evd::fgev(y,nsloc=x)) # nsloc specifies the x variable for the non-stationary location

Call: evd::fgev(x = y, nsloc = x)

Deviance: 1122.072

Estimates

loc loctrend scale shape

89.8087 35.0291 15.0816 -0.1023

Standard Errors

loc loctrend scale shape

2.34431 3.51218 0.96584 0.04071

Optimization Information

Convergence: successful ...

http://stat.epfl.ch slide 120

61



Example: Venice sea levels, 1887–2019

Model-checking for fit to Venice maximum sea-level data. Left panel: Gumbel-scale residuals, ẑt.
Right: ordered ẑt plotted against Gumbel plotting positions, with pointwise (dot-dash) and overall
(solid) 95% confidence bands obtained by simulating 10,000 Gumbel samples.

1900 1940 1980 2020

−
2

0
2

4
6

8
ẑ
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